Face Recognition 人脸识别
doing
Face Recognition
Detection -> Alignment(~= landmark localization) -> Recognition
-> Recognition:
“Deep Face Recognition - A Survey” 这篇论文介绍了人脸识别领域的大致样貌。内容基本如下:
- Background Concepts and Terminology
- Components of Face Recognition
- Data Preprocessing
- Deep Feature Extraction
Network Architecture
Loss Function
Similarity Comparison- Databases of Face Recognition
- Real-World Scenes
- Cross-factor FR
- Hetorogenous FR
- Multiple (or single) media FR
- FR in industry
详细见博文 论文 Deep Face Recognition - A Survey。
-> -> Deep Feature Extraction
Network Architecture
人脸识别主要有两种思路。
- 一种是直接转换为图像分类任务,每一类对应一个人的多张照片,比较有代表性的方法有DeepFace、DeepID等。
- 另一种则将识别转换为度量学习问题,通过特征学习使得来自同一个人的不同照片距离比较近、不同的人的照片距离比较远,比较有代表性的方法有DeepID2、FaceNet等。
选取一些详细分析:
Real-World Scenes
- Cross-Pose Face Recognition
- Cross-Age Face Recognition
- Makeup Face Recognition
- NIR-VIS Face Recognition
- Low-Resolution Face Recognition
- Photo-Sketch Face Recognition
- Low-Shot Face Recognition
- Set/Template-Based Face Recognition
- Video Face Recognition
Industry Concerns
- 3D Face Recognition
- Face Anti-spoofing
- Face Recognition for Mobile Devices
Ref
[1] https://tech.meituan.com/deep_learning_image_recognition.html
[2] https://arxiv.org/pdf/1804.06655.pdf