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During last week’s section, we began our study of convex optimization, the study of
mathematical optimization problems of the form,

minimize
x2Rn

f(x)

subject to x 2 C.

(1)

In a convex optimization problem, x 2 Rn is a vector known as the optimization variable,
f : Rn ! R is a convex function that we want to minimize, and C ✓ Rn is a convex set

describing the set of feasible solutions. From a computational perspective, convex optimiza-
tion problems are interesting in the sense that any locally optimal solution will always be
guaranteed to be globally optimal. Over the last several decades, general purpose methods
for solving convex optimization problems have become increasingly reliable and e�cient.

In these lecture notes, we continue our foray into the field of convex optimization. In
particular, we explore a powerful concept in convex optimization theory known as Lagrange

duality. We focus on the main intuitions and mechanics of Lagrange duality; in particular,
we describe the concept of the Lagrangian, its relation to primal and dual problems, and
the role of the Karush-Kuhn-Tucker (KKT) conditions in providing necessary and su�cient
conditions for optimality of a convex optimization problem.

1 Lagrange duality

Generally speaking, the theory of Lagrange duality is the study of optimal solutions to convex
optimization problems. As we saw previously in lecture, when minimizing a di↵erentiable
convex function f(x) with respect to x 2 Rn, a necessary and su�cient condition for x

⇤ 2
Rn to be globally optimal is that r

x

f(x⇤) = 0. In the more general setting of convex
optimization problem with constraints, however, this simple optimality condition does not
work. One primary goal of duality theory is to characterize the optimal points of convex
programs in a mathematically rigorous way.

In these notes, we provide a brief introduction to Lagrange duality and its applications
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to generic di↵erentiable convex optimization problems of the form,

minimize
x2Rn

f(x)

subject to g

i

(x)  0, i = 1, . . . ,m,

h

i

(x) = 0, i = 1, . . . , p,

(OPT)

where x 2 Rn is the optimization variable, f : Rn ! R and g

i

: Rn ! R are di↵eren-

tiable convex functions

1, and h

i

: Rn ! R are a�ne functions.2

1.1 The Lagrangian

In this section, we introduce an artificial-looking construct called the “Lagrangian” which
is the basis of Lagrange duality theory. Given a convex constrained minimization problem
of the form (OPT), the (generalized) Lagrangian is a function L : Rn ⇥ Rm ⇥ Rp ! R,
defined as

L(x, ↵, �) = f(x) +
mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x). (2)

Here, the first argument of the Lagrangian is a vector x 2 Rn, whose dimensionality matches
that of the optimization variable in the original optimization problem; by convention, we refer
to x as the primal variables of the Lagrangian. The second argument of the Lagrangian
is a vector ↵ 2 Rm with one variable ↵

i

for each of the m convex inequality constraints in
the original optimization problem. The third argument of the Lagrangian is a vector � 2 Rp,
with one variable �

i

for each of the p a�ne equality constraints in the original optimization
problem. These elements of ↵ and � are collectively known as the dual variables of the
Lagrangian or Lagrange multipliers.

Intuitively, the Lagrangian can be thought of as a modified version of the objective
function to the original convex optimization problem (OPT) which accounts for each of the
constraints. The Lagrange multipliers ↵

i

and �

i

can be thought of “costs” associated with
violating di↵erent constraints. The key intuition behind the theory of Lagrange duality is
the following:

For any convex optimization problem, there always exist settings of the dual vari-
ables such that the unconstrained minimum of the Lagrangian with respect to the
primal variables (keeping the dual variables fixed) coincides with the solution of
the original constrained minimization problem.

We formalize this intuition when we describe the KKT conditions in Section 1.6.
1Recall that a function f : S ! R is convex if S is a convex set, and for any x, y 2 S and ✓ 2 [0, 1], we

have f(✓x + (1� ✓)y)  ✓f(x) + (1� ✓)f(y). A function f is concave if �f is convex.
2Recall that an a�ne function is a function of the form f(x) = a

T

x+ b for some a 2 Rn

, b 2 R. Since the
Hessian of an a�ne function is equal to the zero matrix (i.e., it is both positive semidefinite and negative
semidefinite), an a�ne function is both convex and concave.
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1.2 Primal and dual problems

To show the relationship between the Lagrangian and the original convex optimization prob-
lem (OPT), we introduce the notions of the “primal”and “dual problems” associated with a
Lagrangian:

The primal problem

Consider the optimization problem,

min
x


max

↵,�:↵i�0,8i
L(x, ↵, �)

�

| {z }
call this ✓P (x)

= min
x

✓P(x). (P)

In the equation above, the function ✓P : Rn ! R is called the primal

objective, and the unconstrained minimization problem on the right
hand side is known as the primal problem. Generally, we say that
a point x 2 Rn is primal feasible if g

i

(x)  0, i = 1, . . . ,m and
h

i

(x) = 0, i = 1, . . . , p. We typically use the vector x

⇤ 2 Rn to denote
the solution of (P), and we let p

⇤ = ✓P(x⇤) denote the optimal value
of the primal objective.

The dual problem

By switching the order of the minimization and maximization above,
we obtain an entirely di↵erent optimization problem,

max
↵,�:↵i�0,8i

h
min

x

L(x, ↵, �)
i

| {z }
call this ✓D(↵, �)

= max
↵,�:↵i�0,8i

✓D(↵, �). (D)

Here, the function ✓D : Rm ⇥ Rp ! R is called the dual objective,
and the constrained maximization problem on the right hand side is
known as the dual problem. Generally, we say that (↵, �) are dual

feasible if ↵

i

� 0, i = 1, . . . ,m. We typically use the pair of vectors
(↵⇤, �⇤) 2 Rm ⇥ Rp to denote the solution of (D), and we let d

⇤ =
✓D(↵⇤, �⇤) denote the optimal value of the dual objective.
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1.3 Interpreting the primal problem

First, observe that the primal objective, ✓P(x), is a convex function of x.3 To interpret the
primal problem, note that

✓P(x) = max
↵,�:↵i�0,8i

L(x, ↵, �) (4)

= max
↵,�:↵i�0,8i

"
f(x) +

mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x)

#
(5)

= f(x) + max
↵,�:↵i�0,8i

"
mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x)

#
(6)

which follows from the fact that f(x) does not depend on ↵ or �. Considering only the
bracketed term, notice that

• If any g

i

(x) > 0, then maximizing the bracketed expression involves making the cor-
responding ↵

i

an arbitrarily large positive number; however, if g

i

(x)  0, then the
requirement that ↵

i

be nonnegative means that the optimal setting of ↵

i

to achieve
the maximum is ↵

i

= 0, so that the maximum value is 0.

• Similarly, if any h

i

(x) 6= 0, then maximizing the bracketed expression involves choosing
the corresponding �

i

to have the same sign as h

i

(x) and arbitrarily large magnitude;
however, if h

i

(x) = 0, then the maximum value is 0, independent of �

i

.

Putting these two cases together, we see that if x is primal feasible (i.e., g

i

(x)  0, i =
1, . . . ,m and h

i

(x) = 0, i = 1, . . . , p), then the maximum value of the bracketed expression
is 0, but if any of the constraints are violated, then the maximum value is 1. From this, we
can write,

✓P(x) = f(x)|{z}
original objective

+

(
0 if x is primal feasible

1 if x is primal infeasible
| {z }

barrier function for “carving away” infeasible solutions

(7)

Therefore, we can interpret the primal objective ✓P(x) as a modified version of the convex
objective function of the original problem (OPT), with the di↵erence being that infeasible

3To see why, note that

✓P(x) = max
↵,�:↵i�0,8i

L(x,↵, �) = max
↵,�:↵i�0,8i

"
f(x) +

mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x)

#
. (3)

Observe that each of the g

i

(x)’s are convex functions in x, and since the ↵

i

’s are constrained to be nonneg-
ative, then ↵

i

g

i

(x) is convex in x for each i. Similarly, each �

i

h

i

(x) is convex in x (regardless of the sign of
�

i

) since h

i

(x) is linear. Since the sum of convex functions is always convex, we see that the quantity inside
the brackets is a convex function of x. Finally, the maximum of a collection of convex functions is again a
convex function (prove this for yourself!), so we can conclude that ✓P(x) is a convex function of x.
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solutions (i.e., x’s for which some constraint is violated) have objective value 1. Intuitively,
we can consider

max
↵,�:↵i�0,8i

"
mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x)

#
=

(
0 if x is feasible for (OPT)

1 if x is infeasible for (OPT).
. (8)

as a type of “barrier” function which prevents us from considering infeasible points as can-
didate solutions for the optimization problem.

1.4 Interpreting the dual problem

The dual objective, ✓D(↵, �), is a concave function of ↵ and �.4 To interpret the dual
problem, first we make the following observation:

Lemma 1. If (↵, �) are dual feasible, then ✓D(↵, �)  p

⇤

Proof. Observe that

✓D(↵, �) = min
x

L(x, ↵, �) (10)

 L(x⇤, ↵, �) (11)

= f(x⇤) +
mX

i=1

↵

i

g

i

(x⇤) +
pX

i=1

�

i

h

i

(x⇤) (12)

 f(x⇤) = p

⇤
. (13)

Here, the first and third steps follow directly from the definitions of the dual objective
function and the Lagrangian, respectively. The second step follows from the fact that the
preceding expression minimized over possible values of x. The last step follows from the fact
that x

⇤ is primal feasible, (↵, �) are dual feasible, and hence equation (8) implies that the
latter two terms of (12) must be nonpositive.

The lemma shows that that given any dual feasible (↵, �), the dual objective ✓D(↵, �)
provides a lower bound on the optimal value p

⇤ of the primal problem. Since the dual
problem involves maximizing the dual objective over the space of all dual feasible (↵, �), it
follows that the dual problem can be seen as a search for the tightest possible lower bound on
p

⇤. This gives rise to a property of any primal and dual optimization problem pairs known
as weak duality :

4To see why, note that

✓D(↵, �) = min
x

L(x,↵, �) = min
x

"
f(x) +

mX

i=1

↵

i

g

i

(x) +
pX

i=1

�

i

h

i

(x)

#
. (9)

Observe that for any fixed value of x, the quantity inside the brackets is an a�ne function of ↵ and �, and
hence concave. Since the minimum of a collection of concave functions is also concave, we can conclude that
✓D(↵, �) is a concave function of ↵ and �.
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Lemma 2 (Weak Duality). For any pair of primal and dual problems, d

⇤  p

⇤.

Clearly, weak duality is a consequence of Lemma 1 using (↵⇤, �⇤) as the dual feasible
point. For some primal/dual optimization problems, an even stronger result holds, known
as strong duality :

Lemma 3 (Strong Duality). For any pair of primal and dual problems which satisfy certain
technical conditions called constraint qualifications, then d

⇤ = p

⇤.

A number of di↵erent “constraint qualifications” exist, of which the most commonly
invoked constraint qualification is known as Slater’s condition : a primal/dual problem
pair satisfy Slater’s condition if there exists some feasible primal solution x for which all
inequality constraints are strictly satisfied (i.e., g

i

(x) < 0, i = 1, . . . ,m). In practice, nearly
all convex problems satisfy some type of constraint qualification, and hence the primal and
dual problems have the same optimal value.

1.5 Complementary slackness

One particularly interesting consequence of strong duality for convex optimization problems
is a property known as complementary slackness (or KKT complementarity):

Lemma 4 (Complementary Slackness). If strong duality holds, then ↵

⇤
i

g(x⇤
i

) = 0 for each
i = 1, . . . ,m.

Proof. Suppose that strong duality holds. Largely copying the proof from the last section,
observe that

p

⇤ = d

⇤ = ✓D(↵⇤, �⇤) = min
x

L(x, ↵

⇤
, �

⇤) (14)

 L(x⇤, ↵⇤, �⇤) (15)

= f(x⇤) +
mX

i=1

↵

⇤
i

g

i

(x⇤) +
pX

i=1

�

⇤
i

h

i

(x⇤) (16)

 f(x⇤) = p

⇤
. (17)

Since the first and last expressions in this sequence are equal, it follows that every interme-
diate expression is also equal. Subtracting the left half of (17) from (16), we see that

mX

i=1

↵

⇤
i

g

i

(x⇤) +
pX

i=1

�

⇤
i

h

i

(x⇤) = 0. (18)

Recall, however, that each ↵

⇤
i

is nonnegative, each g

i

(x⇤) is nonpositive, and each h

i

(x⇤) is
zero due to the primal and dual feasibility of x

⇤ and (↵⇤, �⇤), respectively. As a consequence,
(18) is a summation of all nonpositive terms which equals to zero. It readily follows that
all individual terms in the summation must themselves be zero (for if not, there are no
compensating positive terms in the summation which would allow the overall sum to remain
zero).
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Complementary slackness can be written in many equivalent ways. One way, in particu-
lar, is the pair of conditions

↵

⇤
i

> 0 =) g

i

(x⇤) = 0 (19)

g

i

(x⇤) < 0 =) ↵

⇤
i

= 0. (20)

In this form, we can see that whenever any ↵

⇤
i

is strictly greater than zero, then this implies
that the corresponding inequality constraint must hold with equality. We refer to this as an
active constraint. In the case of support vector machines (SVMs), active constraints are
also known as support vectors.

1.6 The KKT conditions

Finally, given everything so far, we can now characterize the optimal conditions for a primal
dual optimization pair. We have the following theorem:

Theorem 1.1. Suppose that x

⇤ 2 Rn, ↵

⇤ 2 Rm and �

⇤ 2 Rp satisfy the following conditions:

1. (Primal feasibility) g

i

(x⇤)  0, i = 1, . . . ,m and h

i

(x⇤) = 0, i = 1, . . . , p,

2. (Dual feasibility) ↵

⇤
i

� 0, i = 1, . . . ,m,

3. (Complementary slackness) ↵

⇤
i

g

i

(x⇤) = 0, i = 1, . . . ,m, and

4. (Lagrangian stationarity) r
x

L(x⇤, ↵⇤, �⇤) = 0.

Then x

⇤ is primal optimal and (↵⇤, �⇤) are dual optimal. Furthermore, if strong duality
holds, then any primal optimal x

⇤ and dual optimal (↵⇤, �⇤) must satisfy the conditions 1
through 4.

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.5

2 A simple duality example

As a simple application of duality, in this section, we will show how to form the dual problem
for a simple convex optimization problem. Consider the convex optimization problem,

minimize
x2R2

x

2

1

+ x

2

subject to 2x
1

+ x

2

� 4
x

2

� 1.

5Incidentally, the KKT theorem has an interesting history. The result was originally derived by Karush
in his 1939 master’s thesis but did not catch any attention until it was rediscovered in 1950 by two mathe-
maticians Kuhn and Tucker. A variant of essentially the same result was also derived by John in 1948. For
an interesting historical account of why so many iterations of this result went unnoticed for nearly a decade,
see the paper,

Kjeldsen, T.H. (2000) A contextualized historical analysis of the Kuhn-Tucker Theorem in
nonlinear programming: the impact of World War II. Historica Mathematics 27: 331-361.
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First, we rewrite our optimization problem in standard form as

minimize
x2R2

x

2

1

+ x

2

subject to 4� 2x
1

� x

2

 0
1� x

2

 0.

The Lagrangian is then

L(x, ↵) = x

2

1

+ x

2

+ ↵

1

(4� 2x
1

� x

2

) + ↵

2

(1� x

2

), (21)

and the objective of the dual problem is defined to be

✓D(↵) = min
x

L(x, ↵)

To express the dual objective in a form which depends only on ↵ (but not x), we first observe
that the the Lagrangian is di↵erentiable in x, and in fact, is separable in the two components
x

1

and x

2

(i.e., we can minimize with respect to each separately).
To minimize with respect to x

1

, observe that the Lagrangian is a strictly convex quadratic
function of x

1

and hence the minimum with respect to x

1

can be found by setting the
derivative to zero:

@

@x

1

L(x, ↵) = 2x
1

� 2↵
1

= 0 =) x

1

= ↵

1

. (22)

To minimize with respect to x

2

, observe that the Lagrangian is an a�ne function of x

2

,
for which the linear coe�cient is precisely the derivative of the Lagrangian coe�cient with
respect to x

2

,

@

@x

2

L(x, ↵) = 1� ↵

1

� ↵

2

(23)

If the linear coe�cient is non-zero, then the objective function can be made arbitrarily small
by choosing the x

2

to have the opposite sign of the linear coe�cient and arbitrarily large
magnitude. However, if the linear coe�cient is zero, then the objective function does not
depend on x

2

.
Putting these observations together, we have

✓D(↵) = min
x

L(x, ↵)

= min
x2

⇥
↵

2

1

+ x

2

+ ↵

1

(4� 2↵
1

� x

2

) + ↵

2

(1� x

2

)
⇤

= min
x2

⇥
�↵

2

1

+ 4↵
1

+ ↵

2

+ x

2

(1� ↵

1

� ↵

2

)
⇤

=

(
�↵

2

1

+ 4↵
1

+ ↵

2

if 1� ↵

1

� ↵

2

= 0

�1 otherwise
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so the dual problem is given by:

maximize
↵2R2

✓D(↵)

subject to ↵

1

� 0
↵

2

� 0.

Finally, we can simplify the dual problem by observing making the dual constraints explicit6:

maximize
↵2R2

�↵

2

1

+ 4↵
1

+ ↵

2

subject to ↵

1

� 0
↵

2

� 0
1� ↵

1

� ↵

2

= 0.

Notice that the dual problem is a concave quadratic program in the variables ↵.

3 The L1-norm soft margin SVM

To see a more complex example of Lagrange duality in action, we derive the dual of the
L

1

-norm soft-margin SVM primal presented in class, as well as the corresponding KKT
complementarity (i.e., complementary slackness) conditions. We have,

minimize
w,b,⇠

1

2
kwk2 + C

mX

i=1

⇠

i

subject to y

(i)(wT

x

(i) + b) � 1� ⇠

i

, i = 1, . . . ,m,

⇠

i

� 0, i = 1, . . . ,m.

First, we put this into standard form, with “ 0” inequality constraints:

minimize
w,b,⇠

1

2
kwk2 + C

mX

i=1

⇠

i

subject to 1� ⇠

i

� y

(i)(wT

x

(i) + b)  0, i = 1, . . . ,m,

�⇠

i

 0, i = 1, . . . ,m.

Next, we form the generalized Lagrangian,7

L(w, b, ⇠, ↵, �) =
1

2
kwk2 + C

mX

i=1

⇠

i

+
mX

i=1

↵

i

(1� ⇠

i

� y

(i)(wT

x

(i) + b))�
mX

i=1

�

i

⇠

i

,

6By this, we mean that we are moving the condition which causes ✓

D

(↵) to be �1 into the set of
constraints of the dual optimization problem.

7Here, it is important to note that (w, b, ⇠) collectively play the role of the “x” primal variables. Similarly,
(↵, �) collectively play the role of the “↵” dual variables normally used for inequality constraints. There are
no “�” dual variables here since there are no a�ne equality constraints in this problem.
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which gives the primal and dual optimization problems:

max
↵,�:↵i�0,�i�0

✓D(↵, �) where ✓D(↵, �) := min
w,b,⇠

L(w, b, ⇠, ↵, �), (SVM-D)

min
w,b,⇠

✓P(w, b, ⇠) where ✓P(w, b, ⇠) := max
↵,�:↵i�0,�i�0

L(w, b, ⇠, ↵, �). (SVM-P)

To get the dual problem in the form shown in the lecture notes, however, we still have a
little more work to do. In particular,

1. Eliminating the primal variables. To eliminate the primal variables from the dual
problem, we compute ✓D(↵, �) by noticing that

✓D(↵, �) = min
w,b,⇠

L(w, b, ⇠, ↵, �)

is an unconstrained optimization problem, where the objective function L(w, b, ⇠, ↵, �)
is di↵erentiable. The Lagrangian is a strictly convex quadratic function of w, so for
any fixed (↵, �), if (ŵ, b̂, ⇠̂) minimize the Lagrangian, it must be the case that

r
w

L(ŵ, b̂, ⇠̂, ↵, �) = ŵ �
mX

i=1

↵

i

y

(i)

x

(i) = 0. (24)

Furthermore, the Lagrangian is linear in b and ⇠; by reasoning analogous to that
described in the simple duality example from the previous section, we can set the
derivatives with respect to b and ⇠ to zero, and add the resulting conditions as explicit
constraints in the dual optimization problem:

@

@b

L(ŵ, b̂, ⇠̂, ↵, �) = �
mX

i=1

↵

i

y

(i) = 0 (25)

@

@⇠

i

L(ŵ, b̂, ⇠̂, ↵, �) = C � ↵

i

� �

i

= 0. (26)

We can use these conditions to compute the dual objective as

✓D(↵, �) = L(ŵ, b̂, ⇠̂)

=
1

2
kŵk2 + C

mX

i=1

⇠̂

i

+
mX

i=1

↵

i

(1� ⇠̂

i

� y

(i)(ŵT

x

(i) + b̂))�
mX

i=1

�

i

⇠̂

i

=
1

2
kŵk2 + C

mX

i=1

⇠̂

i

+
mX

i=1

↵

i

(1� ⇠̂

i

� y

(i)(ŵT

x

(i)))�
mX

i=1

�

i

⇠̂

i

=
1

2
kŵk2 +

mX

i=1

↵

i

(1� y

(i)(ŵT

x

(i))),

where the first equality follows from the optimality of (ŵ, b̂, ⇠̂) for fixed (↵, �), the
second equality uses the definition of the generalized Lagrangian, and the third and
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fourth equalities follow from (25) and (26), respectively. Finally, to use (24), observe
that

1

2
kŵk2 +

mX

i=1

↵

i

(1� y

(i)(ŵT

x

(i))) =
mX

i=1

↵

i

+
1

2
kŵk2 � ŵ

T

mX

i=1

↵

i

y

(i)

x

(i)

=
mX

i=1

↵

i

+
1

2
kŵk2 � kŵk2

=
mX

i=1

↵

i

� 1

2
kŵk2

=
mX

i=1

↵

i

� 1

2

mX

i=1

mX

j=1

↵

i

↵

i

y

(i)

y

(j)hx(i)

, x

(j)i.

Therefore, our dual problem (with no more primal variables and all constraints made
explicit) is simply

maximize
↵,�

mX

i=1

↵

i

� 1

2

mX

i=1

mX

j=1

↵

i

↵

i

y

(i)

y

(j)hx(i)

, x

(j)i

subject to ↵

i

� 0, i = 1, . . . ,m,

�

i

� 0, i = 1, . . . ,m,

↵

i

+ �

i

= C, i = 1, . . . ,m,

mX

i=1

↵

i

y

(i) = 0.

2. KKT complementary. KKT complementarity requires that for any primal optimal
(w⇤

, b

⇤
, ⇠

⇤) and dual optimal (↵⇤, �⇤),

↵

⇤
i

(1� ⇠

⇤
i

� y

(i)(w⇤T

x

(i) + b

⇤)) = 0

�

⇤
i

⇠

⇤
i

= 0

for i = 1, . . . ,m. From the first condition, we see that if ↵

⇤
i

> 0, then in order for the
product to be zero, then 1� ⇠

⇤
i

� y

(i)(w⇤T

x

(i) + b

⇤) = 0. It follows that

y

(i)(w⇤T

x

(i) + b

⇤)  1

since ⇠

⇤ � 0 by primal feasibility. Similarly, if �

⇤
i

> 0, then ⇠

⇤
i

= 0 to ensure comple-
mentarity. From the primal constraint, y

(i)(wT

x

(i) + b) � 1� ⇠

i

, it follows that

y

(i)(w⇤T

x

(i) + b

⇤) � 1.

Finally, since �

⇤
i

> 0 is equivalent to ↵

⇤
i

< C (since ↵

⇤ + �

⇤
i

= C), we can summarize
the KKT conditions as follows:

↵

⇤
i

< C ) y

(i)(w⇤T

x

(i) + b

⇤) � 1,

↵

⇤
i

> 0 ) y

(i)(w⇤T

x

(i) + b

⇤)  1.
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or equivalently,

↵

⇤
i

= 0 ) y

(i)(w⇤T

x

(i) + b

⇤) � 1,

0 < ↵

⇤
i

< C ) y

(i)(w⇤T

x

(i) + b

⇤) = 1,

↵

⇤
i

= C ) y

(i)(w⇤T

x

(i) + b

⇤)  1.

3. Simplification. We can tidy up our dual problem slightly by observing that each pair
of constraints of the form

�

i

� 0 ↵

i

+ �

i

= C

is equivalent to the single constraint, ↵

i

 C; that is, if we solve the optimization
problem

maximize
↵,�

mX

i=1

↵

i

� 1

2

mX

i=1

mX

j=1

↵

i

↵

i

y

(i)

y

(j)hx(i)

, x

(j)i

subject to 0  ↵

i

 C, i = 1, . . . ,m,

mX

i=1

↵

i

y

(i) = 0.

(27)

and subsequently set �

i

= C � ↵

i

, then it follows that (↵, �) will be optimal for the
previous dual problem above. This last form, indeed, is the form of the soft-margin
SVM dual given in the lecture notes.

4 Directions for further exploration

In many real-world tasks, 90% of the challenge involves figuring out how to write an opti-
mization problem in a convex form. Once the correct form has been found, a number of
pre-existing software packages for convex optimization have been well-tuned to handle dif-
ferent specific types of optimization problems. The following constitute a small sample of
the available tools:

• commerical packages: CPLEX, MOSEK

• MATLAB-based: CVX, Optimization Toolbox (linprog, quadprog), SeDuMi

• libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

• SVMs: LIBSVM, SVM-light

• machine learning: Weka (Java)
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In particular, we specifically point out CVX as an easy-to-use generic tool for solving convex
optimization problems easily using MATLAB, and CVXOPT as a powerful Python-based
library which runs independently of MATLAB.8 If you’re interested in looking at some of the
other packages listed above, they are easy to find with a web search. In short, if you need a
specific convex optimization algorithm, pre-existing software packages provide a rapid way
to prototype your idea without having to deal with the numerical trickiness of implementing
your own complete convex optimization routines.

Also, if you find this material fascinating, make sure to check out Stephen Boyd’s class,
EE364: Convex Optimization I, which will be o↵ered during the Winter Quarter. The
textbook for the class (listed as [1] in the References) has a wealth of information about
convex optimization and is available for browsing online.
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