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Statistics is fundamentally concerned with summarizing data so that appropriate interpretations 

can be made. In organizations, these interpretations are the basis of decisions that drive 

changes and improvements that positively affect business outcomes.  

What is a Variable? 
A variable is an attribute that can be used to describe a person, place, or thing. In the case of 

statistics, it is any attribute that can be represented as a number. The numbers used to represent 

variables fall into two categories:  

 Quantitative variables are those for which the value has numerical meaning. The value 

refers to a specific amount of something. The higher the number, the more of some 

attribute the object has. For example, temperature, sales, and number of flyers posted 

are quantitative variables. Quantitative variables can be: 

o Continuous: A value that is measured along a scale (e.g., temperature) or  

o Discrete: A value that is counted in fixed units (e.g., the number of flyers 

distributed). 

 Categorical variables are those for which the value indicates group membership. Thus, 

you can’t say that one person, place, or thing has more/less of something based on the 

number assigned to it because it’s arbitrary. In Rosie’s data, location where the drinks are 

sold is a categorical variable. Gender is a classic example.  

Why is this important? 

Understanding the type of variable is extremely important because you can only perform 

meaningful mathematical calculations (e.g., means and standard deviations) on quantitative 

variables. While you can perform these same calculations on categorical variables, the results 

must be interpreted with care because the numbers that are used do not have meaning in the 

same way that quantitative variables do.  

For example, to perform statistical analysis comparing locations of drink sales, you must assign a 

number, or dummy code, to each location. Although location is represented by numbers in your 

data, it doesn’t make sense to calculate the average of those numbers. Assume you assigned a 

value of 1 to ‘beach’ and 2 to ‘park’ and obtained an average of 1.45. What does that mean? You 

only know that Rosie spent more time at the beach than at the park because the average is 

closer to the dummy code assigned to beach, but no other interpretations can be drawn. The 

best way to describe the categorical values in your data is to report frequencies of each possible 

group (e.g., 30% of the days were spent at the park and 70% were spent at the beach). 



Population vs. Sample 
When you conduct a study, you define your population of interest. This is the entire set of 

elements that possess the characteristics of interest. In reality, you will rarely obtain observations 

or measurements on all elements of interest in a particular study simply because some of them 

will be inaccessible for a wide variety of reasons or it will be impractical to do so. 

A population includes all elements of interest. 

A sample consists of a subset of observations from a population. As a result, multiple samples 

can be drawn from the same population. 

Why is this important? 

The nomenclature, statistical formulas, and notation vary depending on whether you are 

analyzing a population or sample. 

In terms of nomenclature, for example, a measurable outcome of a population is called a 

parameter; in a sample, it is called a statistic. 

In terms of formulas, you will notice a subtle but important difference in the population and 

sample formulas for variance and standard deviation. In samples, you divide by n-1 because the 

mean that we use is in this calculation approximates the true mean. Because we are estimating 

both the mean and standard deviation from the same subset of data, we underestimate of the 

true variability in the data. This correction results in an unbiased estimate of the variance and 

standard deviations.  

In terms of notation, population parameters are always represented by Greek characters or 

capital letters whereas sample statistics are always represented by lower case letters.  

Some examples: 

 σ2: Population variance  

 σ: Population standard deviation 

 s2: Sample variance 

 s: Sample standard deviation 

 μ: Population mean 

 x: Sample mean 

 N: Number of observations in the population 

 n: Number of observations in the sample 



Measures of Central Tendency  
Central tendency measures simply provide information on the most typical values in the data for 

a given variable.  

The mean represents the average value of the variable and is calculated by summing across all 

observations and dividing by the total number of observations. 

Population:     Sample: 

 

 

 

where x is each value in the data set for a given variable and n is the total number of 

observations of that variable. 

The median is the middle most value in the data for a given variable; 50% of the values are 

above, 50% of the values are below. To find the median, you must order your data from smallest 

to largest. The result of the formula below gives you the location of the median. Simply count 

down from the top of your sorted list of values until you reach that location. The value at that 

location is the median. If you have an odd number of observations, this will be a single value 

that actually appears in the data; if you have an even number of observations, the median is the 

average of the value above and below this location. 

Md = (n+1)/2 

The mode is the most frequently occurring value for a given variable; if there is more than one 

mode, report them all. The best way to identify the mode is to plot the data using a histogram. 

Measures of Variability 
To better understand the shape of a variable’s distribution, we use measures of variability.   

The simplest measure of variability is the range which is simply the minimum value subtracted 

from the maximum value: 

 

The variance measures the dispersion of the data from the mean: 
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As you can see, variance is the sum of each observation’s deviation from the mean. We must 

square these deviations because if we didn’t, the sum would always be zero.  

The standard deviation is the square root of the variance. By taking the square root, we return 

the measure to the same scale as the mean. It indicates how close the data is to the mean. 

Population:     Sample: 

 

 

Or more specifically: 

 

One final measure of variability is the standard error. It indicates how close the sample mean is 

from the true population mean. The means obtained from samples are estimates of the 

population mean, and it will vary if we were to calculate the means of different samples from the 

same population. Thus, we should be asking, “how close is the mean obtained from our sample 

to the true mean?” The standard error gives us an indication of the reliability of the obtained 

mean. Because we get closer to the real mean with larger sample sizes, the SE will decrease as 

we increase our sample size.  

The standard error is calculated by dividing the standard deviation by the square root of the 

total number of observations. We use this calculation in any statistical analysis based on samples 

rather than the standard deviation. 

 

Why is this important? 

Knowing not only where the mean, median, and mode lie in the data but also the amount of 

variability provides you with needed information about the shape of the distribution. Most 

statistics assume a normal distribution, meaning that the data approximate a bell-shaped curve. 

In normal distributions, 68% of the data fall within +/-1 standard deviation from the mean; 95% 

within 2 standard deviations, and 99% within 3 standard deviations. 

However, the data can take on other shapes, including right (positive) skewed, where the tail of 

the distribution is on the right side of the curve (as indicated by a median and mode that are 

less than the mean) or left (negative) skewed, where the tail is to the left (as indicated by a 

median and mode that are greater than the mean). 
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Normal Distribution: 

 

Skewed Distributions: 

 

Two other measures provide additional information about the shape of the distribution and how 

closely it approximates a normal distribution:  

 Kurtosis is a measure of peakedness. Is the distribution tall and narrow, or is it short and 

flat?  

 Skewness is a measure of the symmetry of the data. The skewness value indicates the 

direction of the tail. If it is positive, the distribution is right skewed; if negative, the 

distribution is left skewed. A normal distribution has a skew of 0. 



Hypothesis Testing 

Hypothesis testing is the process by which we reject or fail to reject statistical hypotheses.  

 The null hypothesis, H0, is the hypothesis that the result obtained from the statistical 

analysis occurred purely by chance.  

 The alternative hypothesis, H1 or Ha, is the hypothesis that the result obtained from the 

statistical analysis is meaningful and not influenced by chance.  

The result of the statistical analysis is always used to test the null hypothesis. Because it’s easier 

to reject or fail to reject the null hypothesis than it is to do this for the alternate, you do not test 

the ‘truth’ of the alternate hypothesis. 

To test a statistical hypothesis, you: 

1. State the null and alternative hypotheses. The hypotheses are stated in such a way that they 

are mutually exclusive. The null hypothesis is the opposite of the result that you hope to 

find. The alternate hypothesis, what you hope to find as the result of your analysis, can take 

one of three forms—that there is a difference but the direction of that difference is 

unknown, that mean of group A is greater than the mean of group B, and that the mean of 

group A is less than the mean of group B. So, your hypotheses will look something like this: 

Predicts a difference but not the direction (two-tailed test): 

H0: µ = �̅� 

𝐻𝑎:  𝜇 ≠  �̅� 

Predicts population mean is larger than sample mean (one-tailed test):  

H0: µ ≤ �̅� 

𝐻𝑎:  𝜇 > �̅� 

Predicts population mean is smaller than sample mean (one-tailed test): 

H0: µ ≥ �̅� 

𝐻𝑎:  𝜇 < �̅� 

2. Select the significance level. Often, researchers choose significance levels, or p values, of 

0.01, 0.05, or 0.10. This value represents the probability of obtaining a significant result if the 

null were true, meaning that you rejected the null hypothesis when you should not have. 



Essentially, this value is used to determine if the resulting statistic is “significant” and reflects 

the amount of “risk” that you’re willing to assume that you fail to reject the null when you 

should have rejected it. Another way to look at this is that with a p value of .05, you have 5 

chances in 100 of finding a significant result when it doesn’t exist. Because this value is 

critical in determining significance, you must establish it in advance (e.g., p<.05).  

3. Determine which statistical analysis to conduct. This choice is based on your hypotheses. 

4. Analyze the data. Obtain the test statistic and determine the probability of that statistic. Is 

that probability larger or smaller than the significance level you selected? If it’s larger, you 

fail to reject the null hypothesis; if it’s smaller, you reject the null hypothesis.  

Why Don’t We “Accept” the Null Hypothesis? 

Acceptance implies that the null hypothesis is true. Failure to reject implies that the data are not 

sufficiently persuasive for us to prefer the alternative hypothesis over the null hypothesis. Failure 

to reject recognizing the possibility that we could be wrong in this decision. Although beyond 

the scope of this overview, this is known as Type II error. 

Measures of Association: Correlation Coefficients 
Correlations measure the strength of the relationship, or association, between two variables. 

One common misinterpretation is that correlations imply causation, but they do not. 

Correlations are not tied to causation.  

The most common correlation calculation is the Pearson product-moment correlation, which 

measures the linear association between two variables. 

The sample’s correlation coefficient is denoted by r while the population correlation is denoted 

by ρ or R. 

How to Interpret a Correlation Coefficient 

The sign and absolute value of a correlation describe the direction and magnitude of the 

relationship between two variables. To interpret correlations, keep in mind that: 

 The value of a correlation coefficient ranges between -1 and 1. 

 The closer the absolute value is to 1, the stronger the linear relationship. The closer to 0, 

the weaker the relationship. Because we almost always mean a Pearson correlation, 

which is measure of linear association, a correlation near 0 doesn’t necessarily mean that 

there is no relationship; it only means that the relationship is not linear (it could be 

curvilinear or logarithmic, for example). 



 The sign of the correlation tells you the direction of the relationship. Positive correlations 

mean that the variables are moving in the same direction; as one increases, so does the 

other. Negative correlations mean that the variables are moving in opposite directions; 

as one increases, the other decreases. 

How to Calculate a Correlation Coefficient 

1. State your null and alternate hypotheses. For example,  

𝐻0:  𝑟 = 0, 𝐻𝑎:  𝑟 ≠ 0 

𝐻0:  𝑟 ≥ 0, 𝐻𝑎:  𝑟 < 0 

𝐻0:  𝑟 ≤ 0, 𝐻𝑎:  𝑟 > 0 

 

2. Establish your significance level. 

3. Run the statistical analysis. In the case of correlations, the formula is as follows: 

 

where n is the number of observations in the sample, x is a given value of the first 

variable, �̅� is the sample mean of x, y is a given value of the second variable, �̅� is the 

sample mean of y, sx is the sample standard deviation of x, and sy is the sample standard 

deviation of y.  

Calculate the degrees of freedom. Degrees of freedom is the number of values in your 

data that can be allowed to vary and still result in the same mean. Imagine you have four 

numbers (a, b, c, and d) that must add up to a total of x. You are free to choose the first 

three numbers at random, but the fourth must be chosen so that it makes the total equal 

to x because that’s the only way you can obtain the same mean. Thus, in this example, 

three is the number that you use for degrees of freedom. 

For correlations, df = n-2 because two parameters (means) are estimated. 

4. Compare the correlation you obtain to a table of critical values for correlations. If the 

correlation obtained is larger than the correlation in that table given your alternate 

hypothesis, significance level, and degrees of freedom, the correlation is considered 

significant, and you reject the null hypothesis. 

 



Tables of critical values can be found online. For example, Illinois.edu, Radford.edu, and 

Vassar have tables and calculators that you can use, but any Bing search for ‘correlation 

significance tables’ will provide a long list of options. 

 

To use these tables, you: 

1. Decide if you are doing a one- or two-tailed test. This is based on your alternate 

hypothesis. If you have predicted a direction for the correlation (e.g., that it’s either 

positive or negative), you are running a one-tailed test. If you have not predicted a 

direction, you are running a two-tailed test.  

2. Calculate degrees of freedom. 

3. Locate this df in the table. This row becomes the lower limit needed for the 

correlation to be significant.  

4. Find your significance level in the top row. Follow that column down the table until it 

intersects with the df row.  

5. If your correlation is equal to or greater than the correlation in that cell, it is 

significant, and you reject the null hypothesis.  

 

An Example. Imagine that you have a correlation of .35 with 25 degrees of freedom (p<.05). To 

determine if that is significant, you find the row for 25 and the column for significance of .05. If 

you’re running a two-tailed test, the minimum correlation needed is .381; thus, you fail to reject 

the null hypothesis. But, if you are running a one-tailed, test the minimum correlation is .323, 

and you do reject the null hypothesis. This pattern will always be true. If you can predict the 

direction of the result, you put all of your risk on one side of the distribution, meaning that the 

resulting statistic can be smaller and yield significant results. However, if you’re wrong about the 

direction, you will never obtain a significant result! 

 
 

http://www.life.illinois.edu/ib/203/Fall%2009/PEARSONS%20CORRELATION%20COEFFICIENT%20TABLE.pdf
http://www.radford.edu/~jaspelme/statsbook/Chapter%20files/Table_of_Critical_Values_for_r.pdf
http://www.vassarstats.net/rsig.html


Rules of Thumb for Correlations 

Although it’s highly recommended that you use some form of significance testing to evaluate 

the size of correlation obtained, some general rules of thumb for interpreting the size of 

correlations have been developed, especially when you have extremely large samples where 

even very small correlations are likely to be statistically significant (traditional measures of 

statistical significance are heavily influenced by sample size with larger sample size requiring 

small statistics for significance). 

Correlation Interpretation 

.00 to .20 No correlation to “negligible” positive 

.20 to .40 Weak to moderately strong positive 

.40 to .60 Moderately strong positive 

.60 to .80 Strong to very strong positive 

.80 to 1.00 Very strong to "perfect"  

.00 to -.20 No correlation to “negligible” negative 

-.20 to -.40 Weak to moderately strong negative  

-.40 to -.60 Moderately strong negative  

-.60 to -.80 Strong to very strong negative  

-.80 to -1.00 Very strong to "perfect" negative  

 

Comparative Measures: One Sample t-Test 
One sample t-tests are performed when you want to compare a sample mean to a known mean 

usually obtained from a population.  

How to Calculate a One Sample t-Test Statistic 

1. State your null and alternate hypotheses. For example,  

𝐻0:  𝜇 =  �̅�, 𝐻𝑎:  𝜇 ≠  �̅�  

𝐻0:  µ ≤ �̅�, 𝐻𝑎:  𝜇 > �̅� 

𝐻0:  µ ≥ �̅�, 𝐻𝑎:  𝜇 < �̅� 

 

2. Establish your significance level. 

3. Run the statistical analysis. In the case of one sample t-tests, the formula is as follows: 

ns

x
t




 

where �̅� is the sample mean, μ is the hypothesized population mean, s is the standard 

deviation, and n is the number of observations. 



To do this, you will need to compute the following:  

 Standard error (which is the denominator in the formula above) and 

 

  

 Degrees of freedom (df = n – 1). 

4. Compare the t-statistic obtained to a critical t-score table. If the obtained t-statistic is 

larger than the value in that table given your alternate hypothesis, significance level, and 

degrees of freedom, the result is considered significant, and you reject the null 

hypothesis. 

Tables of critical values as well as calculators that can be used to determine the probability 

of the statistic obtained can be found online. For example, Texas A&M, Dell Statistics, and 

San Jose State University have tables that could be used and, of course, you can use Excel. 

You use these tables exactly as described for correlations in the section above. Again, any 

Bing search for ‘critical t-score table’ will yield a wide variety of options.  

NOTE: Most statistical packages that calculate this statistic will provide not only the t-value 

obtained from the formula but also its significance. These tables are mentioned above 

because this statistic is very easy to calculate without using any statistical software. In 

addition, understanding how to use these tables can help you better understand the 

hypothesis testing process and illustrate the difference between one- and two-tailed tests as 

well as how sample size can affect the outcome. 

Comparative Measures: Two Sample t-Test 
Two sample t-tests are performed when you want to compare means from two independent 

groups.  

How to Calculate a Two Sample t-Test Statistic 

1. State your null and alternate hypotheses. For example:  

𝐻0:  𝜇1− 𝜇2 = 0 or 𝐻0: 𝜇1− 𝜇2 = 𝑑 

𝐻𝑎: 𝜇1− 𝜇2 ≠ 0 or 𝐻𝑎: 𝜇1− 𝜇2 ≠ 𝑑 

 

𝐻0:  𝜇1− 𝜇2 ≤ 0 or 𝐻0: 𝜇1− 𝜇2 ≤ 𝑑 

𝐻𝑎: 𝜇1− 𝜇2 > 0 or 𝐻𝑎: 𝜇1− 𝜇2 > 𝑑 

 

𝐻0:  𝜇1− 𝜇2 ≥ 0 or 𝐻0: 𝜇1− 𝜇2 ≥ 𝑑 

𝐻𝑎: 𝜇1− 𝜇2 < 0 or 𝐻𝑎: 𝜇1− 𝜇2 < 𝑑 

𝑆𝐸 =
𝑠

√𝑛
 

https://www.stat.tamu.edu/~lzhou/stat302/T-Table.pdf
http://documents.software.dell.com/Statistics/Textbook/Distribution-Tables#t
http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf


 

d is the hypothesized difference between the means. When this difference is 0, the first 

variation of the hypotheses above would be used. 

2. Establish your significance level. 

3. Run the statistical analysis. In the case of two sample t-tests, the formula is as follows: 
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where �̅� are the sample means, D0 is the hypothesized difference between the means, s2
p 

is the pooled variance, and n is the number of observations. 

To do this, you will need to compute the following:  

 Pooled variance (which is used to calculate the standard error that is used as the 

denominator in the formula above) and    
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 Degrees of freedom (df = n1 + n2 – 2).  

 

4. Compare the t-statistic obtained to a critical t-score table. If the obtained t-statistic is 

larger than the value in that table given your alternate hypothesis, significance level, and 

degrees of freedom, the result is considered significant, and you reject the null 

hypothesis. 

The same critical t-score tables used for a one-sample test are used for a two-sample test. 

Comparative Measures: Paired Sample t-Test 
Paired sample t-tests are performed when you want to compare means for dependent groups. 

This dependence is usually the result of having matched pairs across groups or when the same 

people or things have been measured twice. Analyzing “pre” and “post” mean differences is a 

good example of when you would use a paired sample t-test.  

How to Calculate a Paired Sample t-Test Statistic 

1. State your null and alternate hypotheses. For example:  

𝐻0:  𝜇𝑑 = 𝑑, 𝐻𝑎: 𝜇𝑑 ≠ 𝑑 

𝐻0:  𝜇𝑑 ≤ 𝑑, 𝐻𝑎: 𝜇𝑑 > 𝑑 



𝐻0:  𝜇𝑑 ≥ 𝑑, 𝐻𝑎: 𝜇𝑑 < 𝑑 

μd is the true difference in population values and d is the hypothesized difference 

between paired values from two different groups. d is calculated as: d = x1 - x2, where x1 

is the value of variable x in the first data set, and x2 is the value of the variable from the 

second data set that is paired with x1. 

2. Establish your significance level. 

3. Run the statistical analysis. In the case of two sample t-tests, the formula is as follows: 

n/s

Dd
t=

d

0  

where �̅� is the mean difference between paired observations, D0 is the hypothesized 

difference between these pairs, sd is the standard deviation of the differences, and n is 

the number of observations. 

To do this, you will need to compute the following:  

 Standard deviation of the paired differences (which is used to calculate the 

standard error that is used as the denominator in the formula above) and 

 

 Degrees of freedom (df = n-1). 

 

4. Compare the t-statistic obtained to a critical t-score table. If the obtained t-statistic is 

larger than the value in that table given your alternate hypothesis, significance level, and 

degrees of freedom, the result is considered significant, and you reject the null 

hypothesis. 

The same critical t-value tables used for a one-sample test are used for a two-sample test. 

Comparative Measures: Analysis of Variance (ANOVA) 
Analysis of variance (ANOVA) is used to simultaneously test for differences between the means 

of two or more independent groups (many sources state that the minimum is three, but it can 



be used with two although it should be noted that this is technically a t-test). In the case of 

ANOVA, group membership is the “treatment” condition (also known as the “independent 

variable”) and is a categorical variable. The outcome of interest (known as the “dependent 

variable” because the result ‘depends’ on group membership) must be a continuous variable.  

In Rosie’s lemonade example, Rosie might wonder if she sells more lemonade on hot days. To 

test this, she would define a temperature range for cool, moderate, and hot days. Based on the 

temperature reported for that day, she would classify each day into one of these three groups. 

She would then run an ANOVA to determine if sales are significantly different for any of these 

groups. This is an example of a one-way ANOVA; it compares the effects of different levels of 

one treatment variable on an outcome of interest.  

A two-way ANOVA allows for the comparison of multiple treatment conditions on an outcome 

of interest. For example, Rosie may wonder if she sells more lemonade at the beach or the park 

based on temperature. Two-way ANOVA analysis allows you to test not only for main effects but 

also for interactions between levels of the various treatment conditions.  

A main effect occurs when the effect of one treatment on the outcome variable is the same 

across all levels of the other treatments. An interaction occurs when the effect that a treatment 

has on the outcome differs at some level(s) of the other independent variable.  

A main effect would look something like this when plotted. As you can see, temperature is 

clearly influencing sales, but the effect is uniform across temperatures regardless of location. 

 

In the figure below, you can see an interaction between the independent variables. Rosie is 

clearly selling more lemonade at the beach on days when the temperatures are moderate and 

more lemonades at the park when temperatures are high. 



 

ANOVA is an omnibus test statistic, meaning that the result will tell if there is at least one 

significant mean difference, but it will not tell you where it is. To identify which groups are 

statistically different, you will need to run a post hoc analysis. There are several different types of 

post hoc analyses that can be performed. The most common are Bonferroni, Fisher’s Least 

Squared Differences, and Tukey. Regardless of the method selected, they all control for the 

possibility of capitalizing on chance when multiple t-tests are performed as described in the next 

section. 

Why You Shouldn’t Run Multiple t-Tests 

For any statistical test, the significance level selected informs the probability of obtaining NOT 

obtaining significant result when the null hypothesis is actually true; in other words, it’s the 

probability that you’ll fail to reject the null hypothesis when you should (i.e., you have made the 

right decision in relation when it comes to failing to reject the null hypothesis). If you have a p 

value = 0.05, then this probability is 0.95 (=1-.05).  

If you run multiple, independent statistical tests using the same sample of data, the odds of not 

obtaining a significant result when the null is true start to decline, making it more likely you will 

fail to reject the null when you should reject it. This is based on probability math for two 

independent outcomes. If you run two independent tests of the same data, the actual 

probability of failing to reject when the null is true is calculated by multiplying the probably of 

each independent event: .95*.95 = .90, meaning that you have nearly a 10% chance of failing to 

reject the null when you should. 

Imagine if you were making 3 comparisons (.95*.95*.95=.857), you would have increased the 

chance of making an error to nearly 15%!  

ANOVA compares all means simultaneously and maintains error probability at the level that you 

select (e.g., p<.05).  



How to Calculate a One-Way ANOVA 

1. State your null and alternate hypotheses. In this case, the null hypothesis is that the 

means of all treatment levels are the same: 

H0: µ1 = µ2 = … = µp 

The alternative is that at least one level of the treatment has a different effect or mean:  

Ha: at least one of µ1, µ2 , …, µp differs 

2. Establish your significance level. 

3. Run the statistical analysis. The formulas for ANOVA are extremely complicated, but they 

are fundamentally comparing the between-group variability to the within-group 

variability (hence, the name analysis of variance). Between-group variability is the 

variability of the sample means obtained for each level of the treatment condition. 

Within-group variability is the variability of the individual observations (that is, the 

values) within each treatment level. When between group variability is large relative to 

within group, the resulting statistic will be significant; there is a difference between the 

groups based on the treatment. 

4. The outcome of this analysis is a f-statistic, and it is compared to the values obtained 

from a critical f-score table in the same manner as you would do with a t-test. You are 

simply using a different set of tables. Unlike the t-statistic distribution, which is normally 

distributed, however, the f-statistic distribution right skewed. Thus, you will use a 

different table depending on your desired significance level. Examples can be found: 

http://homepages.wmich.edu/~hillenbr/619/AnovaTable.pdf and 

http://documents.software.dell.com/Statistics/Textbook/Distribution-Tables. Again, a 

Bing search of ‘critical f-score tables’ will yield a wide variety of results. 

How to Calculate a One-Way ANOVA 

The process for calculating a two-way ANOVA is essentially the same as a one-way ANOVA. 

However, the hypothesis testing process is different because you will have hypotheses for the 

main effects for all your treatment variables as well as a hypothesis about the existence of an 

interaction.  

Is there a main effect for variable 1? 

• H0: µ1 = µ2 = … = µp (Means of all levels of treatment 1 are the same) 

• Ha: at least one of µ1, µ2 , …, ≠µp differ  

http://homepages.wmich.edu/~hillenbr/619/AnovaTable.pdf
http://documents.software.dell.com/Statistics/Textbook/Distribution-Tables


Is there a main effect for variable 2? 

• H0: µ1 = µ2 = … = µp (Means of all levels of treatment 2 are the same) 

• Ha: at least two of µ1, µ2 , …, ≠µp differ  

Is there an interaction between the variables? 

• H0: There is no interaction 

• Ha: There is an interaction 

Predictive Measures: Linear Regression 

Regression is used to evaluate cause and effect relationships. In these relationships, you are 

predicting an outcome, or dependent, variable (the “effect”) from one or more predictors, or 

independent, variables (“the cause”). Regression can take many forms, but the most common is 

least squares linear regression. In least squares regression, the line minimizes the sum of 

squared differences between the outcome values in the data and the outcome values that are 

predicted based on the regression equation that is estimated based on the data.  

Simply put, regression is a function that estimates the best fitting line through a set of data. In 

its simplest form, it looks like this: y = b0 + b1x, which is the same equation for estimating a line. 

Thus, we know that b0 is the y-intercept of the line, and b1 is the slope, or the average change in 

the dependent variable for a unit change in the independent variable. In regression terminology, 

the b values are called “beta weights.” 

The population regression line is: 

Y = Β0 + Β1X, 

where Β0 is a constant, Β1 is the regression coefficient, X is the value of the independent variable, 

and Y is the value of the dependent variable.  

The sample regression line is: ŷ = b0 + b1x. 

How to Calculate a Regression 

1. State your null and alternate hypotheses. In this case, the null hypothesis is stated for 

regression coefficients for each independent variable included in the analysis. The 

alternate hypothesis is the mutually exclusive opposite of the null. 

H0: β1 = 0, β2 = 0, β3 = 0, … βn = 0 



Ha: β1 ≠ 0 

Ha: β2 ≠ 0 

Ha: β3 ≠ 0 

… 

Ha: βn ≠ 0 

2. Establish your significance level. 

3. Run the statistical analysis. The formulas for regression, like ANOVA, are extremely 

complicated, but the key output for this analysis is R2, or the coefficient of determination. 

If this is significant, then at least one of the beta weights obtained from the analysis is 

significant; if this is not significant, no need to look further as none of the beta weights 

are significant.  

The coefficient of determination is interpreted as the proportion of the variance in the 

dependent variable that is predictable from the independent variable(s). Because it is a 

proportion, it ranges from 0 to 1. When R2 is near 0, the dependent variable cannot be 

predicted from the independent variable(s). When it’s near 1, the dependent variable can 

be predicted without error from the independent variable(s). Thus, this value indicates 

the extent to which the dependent variable can be predicted from the independent 

variable(s) and is essentially the percentage of variance in the dependent variable that 

can be explained by the independent variables. For example, R2 = 0.15 means that 15 

percent of the variance in dependent variable is predictable from independent 

variable(s); an R2 = 0.68 means that 68% can be explained. 

Assuming a significant R2, the next step is to determine which beta weights and the 

corresponding independent variables are significant predictors in the regression 

equation. 

4. The outcome of this analysis is a f-statistic, and it is compared to the values obtained 

from a critical f-score table in the same manner as you would do with a t-test. You are 

simply using a different table.  

Resources 
A great overview/introduction to statistics: http://stattrek.com/ 

http://stattrek.com/


Distribution tables used to determine probabilities of a wide number of statistics: 

http://documents.software.dell.com/Statistics/Textbook/Distribution-Tables  

http://documents.software.dell.com/Statistics/Textbook/Distribution-Tables

